热设计网

吹风冷却时风扇出风口与散热器间距离对模块散

admin

4.2. 模块内流场的均匀程度

如图7、8、9、10、11、12、13,它们分别是在不同距离的前提下,风扇的中截面速度分布图。由于在建模过程中,考虑到这是风扇吹风冷却,风扇swirl对流场的影响较大,因此在模型中打开风扇的swirl参数设置。

从下列的速度分布图中可以看出:在吹风条件下,风扇swirl对流场的影响是非常显著的,并且其流场的均匀程度随风扇距散热器间的距离有较为显著的变化。相比较而言,在风扇距散热器间的距离为25.0~75.0mm间,流场均匀程度与该距离的相关度较该距离为75.0~175.0mm时大。随着距离进一步的增大,散热器齿间和散热器入口的流场都变得更加的均匀,散热器的效率得到进一步的提高。当该距离达到或超过冷却风扇的一个外形直径时,从图12、图13中可以看出,在全域上可以认为流场的分布已经达到几乎理想的状态。

 

flotherm速度分布图

图7、距离为25.0mm时风扇中截面的速度分布图

 

图8、距离为50.0mm时风扇中截面的速度分布图

图9、距离为75.0mm时风扇中截面的速度分布图

图10、距离为100.0mm时风扇中截面的速度分布图

图11、距离为125.0mm时风扇中截面的速度分布图

图12、距离为150.0mm时风扇中截面的速度分布图

图13、距离为175.0mm时风扇中截面的速度分布图

5.结论

在实际应用中,受到产品本身结构布置、外形尺寸等相关因素的限制,冷却风扇与散热器间的距离不可能得到任意满足。那么,如何合理、经济地确定风扇与散热器间距离的大小,如何平衡诸多因素间的矛盾呢?我们必须从引起该结果差异的原因中进行分析,找出一个折衷的方法来较为合理、经济地确定该距离的大小。

仔细分析造成流场不均匀的原因,其关键的因素就是:一方面,由于实际风扇中HUB的存在,使冷却风从风扇环形的截面吹出,从而在风扇HUB的下游区域形成不均匀地流场分布;另一方面,轴流风扇的工作原理迫使流经该风扇出口截面的流体,呈旋转状态流向下游。实际上,在保证流体流出风扇后一定距离的情况下,这种旋转效果是能够促进流体间的混合,从而形成一个比较均匀的流场分布,如图12与图13所示。结合图7~图13风扇中截面速度分布图与温度监控点随距离的变化关系曲线(图3~图6),我们可以看出,当风扇距散热器为一个风扇的HUB直径时,由于HUB存在而导致的不均匀流场可以得到较大程度上的改善,虽然流场分布还是存在一定程度上的不均匀,但是表现在散热器上功率元器件的壳温,却没有显著的变化,从而形成这一渐近的变化趋势曲线。由此我们可以得出以下结论:

1、  风扇强迫吹风冷却时,在冷却风扇出口下游处,造成流场不均匀的主要因素主要是风扇HUB的存在,其次才是流体流经轴流风扇后的旋转效应。

2、  该结构设计上,为了能够获得散热器的最大散热能力,我们必须要保证冷却风扇出口截面与散热器间的距离至少大于一个风扇HUB的直径。但是,一旦该距离超过一个风扇的外形直径后,对下游流场均匀程度的贡献已经微乎其为,可以不用考虑该因素造成影响散热器散热能力这一因素。

3、  如果在结构设计上,无法保证冷却风扇出口截面与散热器间的距离至少大于一个风扇HUB的直径,则必须要求在风扇与散热器间安装整流栅。

 

标签: 点击: 评论:

留言与评论(共有 0 条评论)
   
验证码: