热设计网

散热原理——轴承和叶片

admin

散热原理——轴承和叶片

轴承和叶片是散热风扇两大组成部分,这两大部分的改进是散热器工作效率得以提升的重要因素。

叶片

叶片数量

CPU风扇的叶片通常在6片到12片之间。一般说来,叶片数量较少的容易产生较大的风压,但运转噪音也较大;而叶片数量较多的则恰恰相反。

叶片形状

有镰刀型、梯形和AVC专利的折缘型等。相对来说,镰刀型扇叶运转时比较平稳安静,但所能产生的风压也较小;梯形扇叶容易产生较大风压,但噪音也较大。折缘型是最优秀的设计,在保持低噪音的同时能产生较大的风压,但目前仅用于AVC自己的产品中。目前见得较多的是镰刀型的设计。

设计优秀的扇叶,能在不高的风扇转速下产生输出较大的风量和风压,同时也不会产生太大的风噪声。除了形状以外,叶片倾斜的角度也很重要,要配合电机的特性和散热片的需要来设计。否则,单纯追求叶片倾角大,可能会出现风噪大风力小的情况。

涡轮风扇:涡轮扇可以消除立轴式风扇轴心部分的风力盲区,使风力更加均匀,散热效率更高。

 

AVC折缘风扇

AVC折缘风扇涉及一种轴承风扇的改良结构,特别涉及在限制圆筒空间中能减小涡流效应的扇叶结构。折缘扇叶型增压降噪风扇装置,可以消除轴流风机扇叶在限制空间中引致的涡流,降低噪声,增加风压。

 

Tt公司五面进风静音风扇

Tt公司也推出了五面进风静音风扇,传统的风扇进风的地方主要在顶部,而它则风扇四周的提供了入口,这样它提高进风量同时不增加风扇的转速达到静音的效果。

 

风扇Hyper flow

它采用了Hyper flow(流体力学设计),将原来的封闭式侧壁改成了百叶窗型的侧开口开放式设计,因此进风方式也随之改变,从单独的上进风变为上进风与侧进风并行。根据空气动力学的原理,上进风的方式是空气在旋转的风扇扇叶的驱使下,使其自上而下成垂直流动,此时在风扇的中心形成一个空气压力相对较低的地区,风扇周围的空气于是向气压较低的风扇中心流动,在流动的过程中,气流在扇叶旋转的作用下发生偏移,从而形成了一个类似龙卷风的涡旋,随着涡旋的增强,周围的空气被迅速的吸过来。这样的设计,有效地防止了风扇的末端和扇框之间形成狭窄的气流扰动区和空气湍流产生的风噪声。

其实每个风扇厂商都有自己的扇叶设计方法,每种设计方法也都是经过大量的实验数据所得,可以说复杂程度非常之高。对于具体的技术问题本文就不再深入讨论。

散热器风扇的效能主要取决于:风扇扇叶直径和轴向长度;风扇的转速;扇叶的形状等因素。一般好的风扇除了其风量大和风压高之外,其本身的可靠性是相当的重要,风扇使用的轴承形式在此显得非常重要。一般高速风扇使用滚珠轴承(ball bearing),而低速风扇则使用成本较低廉的自润轴承(sleeve bearing)。每个风扇都需要两个轴承,一些风扇上标着"BS"的字样,是单滚珠式轴承,BS的意思是"1 ball + 1 sleeve",依然带有自润轴承的成分。比BS更高级的是双滚珠式轴承,即Two Balls。下面将对各种轴承形式加以说明。

含油轴承是使用滑动摩擦的套筒轴承,使用润滑油作为润滑剂和减阻剂,初期使用时运行噪音低,制造成本也低,但是这种轴承磨损严重,寿命较滚珠轴承有很大差距。而且这种轴承使用时间一长,由于油封的原因(电脑散热器产品都不可能使用高档油封,一般也就是普通的纸油封),润滑油会逐渐挥发,而且灰尘也会进入轴承,从而引起风扇转速变慢,噪音增大等问题,严重的还会因为轴承磨损造成风扇偏心引发剧烈震动。出现这些现象,要么打开油封加油,要么就只有淘汰另购新风扇。

含油轴承由于使用周期较短,轴承内部的油控直接影响运转时噪音大小,所以越来越被各知名大厂所摒弃。双滚珠轴承现在被业界广泛看好,成为高品质散热器风扇的首选,运转稳定性无出其右,但价格也较高。而作为物美价廉的选择,各大厂商的折衷方案就是采用单滚珠轴承。

单滚珠轴承是对传统油封轴承的改进。它的转子与定子之间用滚珠进行润滑,并配以润滑油。它克服了油封轴承寿命短,运行不稳定的毛病,而成本上升极为有限。单滚珠轴承吸收了油封轴承和双滚珠轴承的优点。将轴承的使用寿命提升到了40,000小时,加入滚珠之后,运行噪声有所增大,但仍小于双滚珠轴承。

双滚珠轴承

双滚珠轴承属于比较高档的轴承。轴承中有数颗微小钢珠围绕轴心,当扇页或轴心转动时,钢珠即跟着转动。因为都是球体,所以摩擦力较小,且不存在漏油的问题。双滚珠风扇优点是寿命较长,大约在50000 ~100000小时;抗老化性能好,适合转速较高的风扇。双滚珠轴承的缺点是制造成本高,并且在同样的转速水平下噪音最大(因为滚珠轴承摩擦点增加了2倍)。双滚珠风轴承和液压轴承的封闭性较好,尤其是双滚珠轴承。双滚珠轴承被整个嵌在风扇中,转动部分没有与外界直接接触。在密封的环境中,轴承的工作环境比较稳定。因此5000转级别的大口径风扇几乎都使用双滚珠轴承。而液压轴承由于具备独特的还回式油路,所以润滑油泄露的可能性较小。

来福轴承

来福轴承(Rifle Bearing)技术的代表厂商是CoolerMaster,CM已经将旗下的大部分传统油封轴承风扇升级到来福轴承。作为传统油封轴承的改进,来福轴承采用耐磨材料制成高含油中空轴承,减小了轴承与轴芯之间摩擦力,来福轴承还带有反向螺旋槽及挡油槽的轴芯,在风扇运转时含油将形成反向回游,从而避免含油流失,因此提升了轴承寿命。来福轴承风扇通过采用以上结构及零件,使得含油及保油能力大幅提升,并降低了噪音。

HYPRO轴承:

Hypro轴承之名来源于HY(Hydrodynamic wave,流体力学波)PRO(Oil protection system,油护系统),系知名散热器及风扇设计制造厂家ADDA的专利产品,同是在传统含油轴承基础之上进行多项改进而成。Hypro与液压轴承可谓殊途同归,两种设计各自采用了一些独到的改进措施,但精髓同为循环油路系统,各方面的表现也基本相当。通常产品寿命可达50000小时以上。

外磁风扇是唯一能够较好解决死区问题的轴流风机产。外磁驱动风扇的电机移出了“中心”位置,安装在了风扇的四个角上,风扇页与外框是固定在一起。外磁驱动风扇大大节省了马达所占据的空间,最大程度上减小了普通轴流风扇中的风力盲区的面积。除了这个,外磁驱动风扇的另一个优点是使风扇扇页转动更加平稳,产生较小的噪声。

 

磁浮风扇

磁浮风扇:

磁浮风扇的马达有磁浮(MS)设计,其磁感应线与磁浮线成垂直,故轴芯与磁浮线是平行的,故转子的重量就固定在运转的轨道上,利用几乎是无负载的轴芯往反磁浮线方向顶撑,形成整个转子悬空,在固定运转轨道上。因此,磁浮(Magnetic System:MS)事实上只是一种辅助功能,具体的还有配合之前的设计,现有的磁浮设计有与VAPO汽化轴承、BALL滚珠轴承、及SLEEVE含油轴承。

磁浮(MS)设计+VAPO汽化轴承

磁浮(MS)设计+SLEEVE含油轴承

 

VAPO轴承与SLEEVE轴承

VAPO轴承与SLEEVE轴承的不同点在与材料方面,VAPO是采用特殊的材料,不同与一般的SLEEVE材料,同时VAPO轴承的内层表面也是经过特殊加工的,所以在硬度方面比SLEEVE轴承的要好,而且可以经受起更高的温度和运转时的摩擦,一般都可以运行在70℃以上。而一般的SLEEVE配合磁浮设计也是可以延长其寿命的,但就没有其他的两个强了。

液压轴承

液压轴承是由AVC首创的技术。同样,它也是在油封轴承的基础上改进而来的。液压轴承拥有比油封轴承更大的储油空间,并有独特的环回式供油回路。液压轴承风扇的工作噪音又明显的降低,使用寿命也非常长,可达到40000小时。但并非所有的AVC散热器都采用液压轴承风扇。

 

风扇-液压轴承

由此可见,液压轴承实质上仍然是一种油封轴承。但这种经过了改进,寿命比普通油封轴承大大延长了,并且继承了油封轴承的优点——运行噪音小。

纳米轴承

富士康在其产品中首先引入了纳米轴承。传统油封轴承风扇在使用过程中磨损比较严重,长时间使用时的可靠性较低。纳米轴承有效的克服了这个问题:陶瓷轴承技术采用了纳米级高分子材料与特殊添加剂充分融合,轴承核心全面采用纳米级的氧化锆粉,使用冲模及烧结工艺制成,晶体颗粒由过去的60um下降到了0.3um,具有坚固、光滑、耐磨等特性。

纳米陶瓷轴承(NCB)具有很强的耐高温能力,不易挥发,这大大延长了风扇的使用寿命,纳米轴承的性质与陶瓷类似,越磨越光滑。据测试,采用纳米陶瓷轴承(NCB)的风扇平均使用寿命都在15万小时以上。

 

风扇-纳米陶瓷轴承NCB

 

标签: 点击: 评论:

留言与评论(共有 0 条评论)
   
验证码: